Radar measurements can vastly improve a key technology for the energy and production industries
Fluidized beds are used in a variety of industries and play an important role in the transition to green energy and the production of food and drugs. However, the process that occurs inside a fluidized bed is extremely complex and—due to lack of effective measurement techniques—has remained largely unknown.
Now, researchers from Chalmers University of Technology in Sweden have developed a high-frequency radar technique that can measure exactly what is happening inside a fluidized bed with unrivaled precision. This breakthrough could lead to completely new and more efficient processes in several industries, including energy conversion. The work is published in the journal Fuel.
Fluidized bed combustion is one of the leading technologies used in the world’s thermal power plants. This technology converts solid fuels, such as biomass and waste, into district heating and electricity. Fluidization technology is also fundamental to many other processes that are expected to play an important role globally in the transition of energy systems, and in circular resource flows—such as in carbon capture, energy storage and the production of hydrogen and other fossil-free fuels.
Researchers at Chalmers University of Technology have now developed a radar technique able to provide a detailed characterization of the flow of solids in fluidized beds, the lack of which has been holding back the development of these processes.
Fluidized beds are already the most effective technology for converting solid biofuels into energy. This technology results in an efficient and consistent rate of combustion because the solid particles assume a liquid-like state which helps to distribute the heat homogeneously in the combustion chamber. In brief, fluidization technology is based on a gas being blown through a bed of small sand-like particles in a reactor, so that these solid particles, the fuel and the gas, become thoroughly mixed.