Twisting a route for surface plasmons
Graphene is an atomically thin material that supports highly confined plasmon polaritons, or nano-light, with very low loss. The properties of graphene can be made richer by introducing and then rotating a second layer so that there is a slight angle between the atomic registry. Sunku et al. show that the moiré patterns that result from such twisted bilayer graphene also provide confined conducting channels that can be used for the directed propagation of surface plasmons. Controlling the structure thereby provides a pathway to control and route surface plasmons for a nanophotonic platform.
Abstract
Graphene is an atomically thin plasmonic medium that supports highly confined plasmon polaritons, or nano-light, with very low loss. Electronic properties of graphene can be drastically altered when it is laid upon another graphene layer, resulting in a moiré superlattice. The relative twist angle between the two layers is a key tuning parameter of the interlayer coupling in thus-obtained twisted bilayer graphene (TBG). We studied the propagation of plasmon polaritons in TBG by infrared nano-imaging. We discovered that the atomic reconstruction occurring at small twist angles transforms the TBG into a natural plasmon photonic crystal for propagating nano-light. This discovery points to a pathway for controlling nano-light by exploiting quantum properties of graphene and other atomically layered van der Waals materials, eliminating the need for arduous top-down nanofabrication.