If you have lived in a home with a trampoline in the backyard, you may have observed the unreasonably tall grass growing under it. This is because many crops, including these grasses, actually grow better when protected from the sun, to an extent.
And while the grass under your trampoline grows by itself, researchers in the field of solar photovoltaic technology—made up of solar cells that convert sunlight directly into electricity—have been working on shading large crop lands with solar panels—on purpose.
This practice of growing crops in the protected shadows of solar panels is called agrivoltaic farming. And it is happening right here in Canada.
Such agrivoltaic farming can help meet Canada’s food and energy needs and reduce its fossil fuel reliance and greenhouse gas emissions in the future.
When shade equals protection
Our recently published paper found that Canada has an enormous agrivoltaic potential as it is a global agricultural powerhouse—with Canadian-produced food export goals set at $75 billion by 2025.
Many crops grown here, including corn, lettuce, potatoes, tomatoes, wheat and pasture grass have already been proven to increase with agrivoltaics.
Studies from all over the world have shown crop yields increase when the crops are partially shaded with solar panels. These yield increases are possible because of the microclimate created underneath the solar panels that conserves water and protects plants from excess sun, wind, hail and soil erosion. This makes more food per acre, and could help bring down food prices.
And as the costs of solar energy plummet, nations across the world are installing agrivoltaic systems and offsetting the burning of fossil fuels by profitably producing more renewable energy.
Solar farming is now globally trending
The agricultural industries in Europe, Asia and the United States have been aggressively expanding their agrivoltaic farms with wide public support.
In Europe, solar panels are put over different types of crops, including fruit trees. Meanwhile, in China, agrivoltaics is used to reverse desertification which is literally using solar panels to green former deserts.
In the U.S., social science studies have shown the photovoltaic industry, farmers and the general public are enthusiastically looking forward to the implementation of such projects.
Surveys of the rural U.S., from Michigan to Texas, show 81.8 percent of respondents would be more likely to support solar development in their community if it integrated farming. Rural residents generally like the idea of maintaining agricultural jobs, increased revenue from the sale of energy and the fact that it could provide a continued source of income. They believe it can act as a buffer against inflation and bad growing seasons.